
UCRL-CONF-210825

Hexahedron Projection for
Curvilinear Grids (revision 1)

N. Max

March 25, 2005

Volume Graphics 2005
Stony Brook, NY, United States
June 20, 2005 through June 21, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Hexahedron Projection for Curvilinear Grids

Nelson Max

Lawrence Livermore National Laboratory

The goal of this paper is to classify the projections of the

remaining hexahedra, and subdivide them into triangle fans or
strips for hardware rendering. Since a single hexahedron can be
rendered much more quickly than five tetrahedra, in terms of
both vertex and fragment operations, this offers a significant
speed up over subdividing all the cells into tetrahedra.

ABSTRACT:

This paper presents a method of dividing into triangle fans the
most common projections of hexahedra from curvilinear
meshes, so that they can be volume rendered in hardware.
CR Categories and Subject Descriptors: 1.3 Computer Graphics In a curvilinear grid, the faces can be non-planar, so the

assumption that the thickness varies linearly across the image
plane polygons in the subdivision is not true even in an
orthogonal projection, and is not true even for cubical cells in a
perspective projection. The details of this nonlinearity are
discussed in Max, Williams, and Silva [5], and are not dealt
with here. However, if the forms of the curved face surfaces are
known, they could be evaluated in a fragment program to
determine the exact thickness.

Additional Keywords: volume rendering, polyhedron projection

1. INTRODUCTION
The polyhedron projection method for volume rendering

divides the projection of each volume cell into polygons which
lie inside the projections of a single front-facing and a single
back-facing cell face. The thickness, that is, the length of the
viewing ray inside the cell, varies linearly across such a
projection polygon, and can be linearly interpolated by the
hardware in preparation for shading to achieve back-to-front
color-opacity compositing. This hardware method was
pioneered by Shirley and Tuchman [1] for tetrahedra, and a
corresponding method for parallel projection of rectilinear grids
of identically shaped cells was described by Wilhelms and Van
Gelder [2]. To form these polygonal regions in the general case,
the image plane must be subdivided by the projections of all the
edges of the volume cell. This is a computational geometry
problem. Wilhelms and Van Gelder [2] described a line sweep
method for constructing this subdivision, and Max, Williams,
and Silva [3] described an incremental method which inserted
the edge projections into the subdivision one at a time. Such
methods are difficult to implement robustly, since they require
topological consistency among multiple tests for questions like
"does point P lie to the left, on, or to the right of line L?" The
finite precision of floating point arithmetic can cause
inconsistent results from such tests.

2 PROJECTION CASES AND THEIR TRIANGLE FANS
The projection cases handled here include the three discussed

in Schussman and Max [4], which can arise from the
perspective projection of a cube. They are shown in figure 1 b,
c, and d. There are several additional cases, such as the one
shown in figure 1 a, which can occur only in curvilinear
meshes. The test in [4] to distinguish the cases was simple,
since it used the fact that the cell was a cube. For curvilinear
grids, the test is more involved, as described below.

The test first looks at the six quadrilateral faces in turn. The
line equations of the projections of the face's four edges are
computed. For each line, the other two vertices of the face are
checked to see if they are on the same side of the edge. If not,
the projection of the face will be a "bow-tie" self intersecting
quadrilateral, and the cell is divided into tetrahedra. Next, the
other four cell vertices which are not vertices of this face are
tested with the four line equations, to see if any are contained in
the face projection. If so, the number that do is saved in a
variable called "count", and their vertex indices are also saved.
There are four possibilities for count: 0, 1, 2, and 4, shown
respectively in figure 1 a, b, c, and d. (A projection with count
= 3 would necessarily have a bow-tie quadrilateral.) In figure 1
b, there are two quadrilaterals containing a vertex projection.
After the first one is found, the containment testing stops.

Schussman and Max [4] proposed a different sort of
algorithm for a perspective view of a regular cubical grid,
which classified the projections of a cube into one of a small
number of cases, based on tests on the whole cube,
guaranteeing topological consistency. Here we generalize this
approach to hexahedra in a curvilinear grid.

A cell in a curvilinear grid can be quite distorted, and one of
its faces can project to a self-intersecting "bow-tie" quadri-
lateral. For either way such a face is divided into two triangles,
the two triangle projections overlap. In this case, for one of the
hexahedra sharing the offending face, there is a viewing ray
which exits the hexahedron through one of the overlapping
triangles, and then re-enters it through the other. It is thus
impossible to construct a visibility sort for back to front
compositing. Therefore, we first test each hexahedron for faces
with self-intersecting projections. If any are found, the cell is
subdivided into five tetrahedra, and the Shirley-Tuchman
triangle fans are used on the tetrahedra. There may also be
degenerate cells, where one or more vertices coincide, for
example, along the axis in cylindrical or spherical coordinates.
Such cells are also divided up into tetrahedra, some of which
may themselves be degenerate.

a b c d

Figure 1. The four possibilities for count. a: 0, b: 1, c: 2, and d: 4.

Mail stop L-560, Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore CA 94550; max2@llnl.gov

V4
The vertices of our hexahedra are numbered as in figure 2. In

order to label the vertices in the triangle fans in a standard
order, a vertex index permutation corresponding to a rotation is
found so that the vertices of the face that contains the projected
vertex or vertices ends up with indices 0, 1, 2, and 3. A further
rotation permutation insures that in the count = 1 case, the
contained vertex has index 7, or in the count = 2 case, the
contained vertices have indices 6 and 7.

V5

 V0

V10
 V1

Let us start with the count = 1 projection topologies, which
have the most different configurations in curvilinear grids.

V8

In the cube projection situation shown in figure 2, edges V7V4
and V0V1 intersect in a new vertex V8, and edges V7V6 and V1V2
intersect in a new vertex V9. The two triangle fans list vertex
indices 8, 1, 5, 4, 0, 3, 7, 1, and indices 9, 7, 3, 2, 6, 5, 1, 7.

V7
V9 V6

 V4 V5 V3 V2

V0 V8
 Figure 3. Vertex indices for alternate A of the count = 1 case.

The three triangle fans are shown in different shades of grey.
V1

 V4

 V9 V5 V6V7

V0

V8 V6V3 V2 V10
 V9 V7 V1

Figure 2. Vertex indices for the standard count = 1 case. The first

triangle fan is shown shaded.
In curvilinear grids, one of these edge intersections may not

be found. If vertex V8 is not found because edges V7V4 and V0V1
do not intersect, as shown in figure 3, we look instead for V8 at
the intersection of edges V7V4 and V1V2, and another new vertex
V10 at the intersection of edges V7V4 and V1V5. Three triangle
fans are used. The first lists vertex indices 9, 6, 2, 3, 7, 8, 10, 5,
6; the second lists indices 8, 7, 3, 0, 1; and the third lists indices
10, 8, 1, 0, 4, 5.

V3 V2

Figure 4. Vertex indices for alternate B of the count = 1 case.
In a similar case vertex V9 is the one not found, and the

revised vertex numbering is as shown in figure 4. We look for
V9 at the intersection of edges V7V6 and V0V1 and a new vertex
V10 at the intersection of edges V7V6 and V1V5. There are again
three triangle fans. The first lists vertex indices 10, 5, 6, 2, 1, 9,
8, 4, 5; the second list indices 9, 1, 2, 3, 7; and the third lists
indices 8, 9, 7, 3, 0, 4.

V1 V0

V10
V5

V4

Going back to the situation in figure 3, if V8 is found at the
intersection of edges V7V4 and V1V2, but V10 is not found at the
intersection of edges V7V4 and V1V5, then we look instead for
V10 at the intersection of edges V1V2 and V4V0. The
configuration is then as in figure 5, and the two triangle fans list
vertices 9, 2, 3, 7, 8, 4, 5, 6, 2, and 10, 7, 3, 0, 1, 5, 4, 8, 7.

V8

V7

V9 V6 There is a similar situation for the case in figure 4. If V10 is
not found as expected at the intersection of edges V7V6 and
V1V5, then we look for it at the intersection of edges V2V6 and

V3
V2

 Figure 5. Vertex indices for alternate C of the count = 1 case.

 The count = 4 case shown in figure 7 needs no extra vertices.
Two triangle fans are used. The first fan lists vertex indices 4,
0, 3, 7, 6, 5, 1, 0; and the second lists indices 6, 7, 3, 2, 1, 5.

V4 V5

The count = 2 case shown in figure 8 has a new vertex V8 at
the intersection of edges V7V4 and V0V1, a new vertex V9 at the
intersection of edges V6V5 and V0V1. As in [4], we use a triangle
fan, with vertex indices 7, 8, 0, 3, 2, 6, 9, 8, and a triangle strip
with vertex indices 0, 4, 8, 5, 9, 1, 6, 2.

V6 V0 V8 V9 V10 The last case to consider is when count = 0. If no
quadrilateral contains other projected vertices and there are no
bow-tie projections, the projected vertices form a convex
octagon, as in figure 1 a, or figure 9. In this case, the vertex
renumbering scheme is somewhat different. The vertex indices
are permuted so that they run counter-clockwise around the
octagon, as in figure 9. Each of the four diagonal projected
edges that are not on the perimeter of the octagon belong to one
quadrilateral whose other sides are part of the perimeter, and
therefore must join a vertex i with vertex (i + 3) mod 8 or (i - 3)
mod 8. If vertex 0 is connected by such a diagonal to vertex 5
(the i – 3 case), the vertices are renumbered by replacing index i
by index 8 – i, so that the projection topology is as in figure 9.

 V1 V7

 V2 V3

Figure 6. Vertex indices for alternate D of the count = 1 case.

The new vertices are then found as follows: vertex V8 at the
intersection of edges V0V3 and V1V6, vertex V9 at the
intersection of edges V0V3 and V2V5, vertex V10 at the
intersection of edges V4V7 and V2V5, and vertex V11 at the
intersection of edges V4V7 and V1V6. We use a triangle fan with
vertex indices 8, 0, 1, 2, 9, 10, 11, 7, 0, and a triangle strip with
vertex indices 7, 6, 11, 5, 10, 4, 3, 9, 2.

V1V5. The configuration is then as in figure 6, and the two
triangle fans list vertices 8, 4, 0, 3, 7, 9, 6, 5, 4, and vertices 10,
6, 9, 7, 3, 2, 1, 5, 6.

V0 V1 V2 V1

V4 V5

V8 V9 V3 V0
V6 V7

V3 V2

Figure 7. Vertex indices for the count = 4 case.

V11 V10

Figure 8.Vertex indices for the count = 2 case.

Figure 9. Vertex indices for count = 0 case.

3 RESULTS
Figures 10 and 11 show projections with two different transfer

functions of a volume made up of 32 curvilinear grids, with a total
of 141,960 hexahedra. Among these hexahedra, 50,352 were
degenerate, with two or more vertices coinciding, and 924 more
had "bow tie" self intersecting face projections. In both these
cases, we subdivided the cell into five tetrahedra.

There remained 90,684 hexahedra. Among the count = 1 cases,
there were 78,146 standard projections as in figure 2, 242
alternate projections as in figure 3, 532 as in figure 4, 16 as in

V5 V4 V7 V4

V0 V5 V1 V6

V8 V9

V6

V7

V3 V2

figure 5, and 31 as in figure 6. There were 223 count = 4 cases as
in figure 7, 11,333 count = 2 cases as in figure 8, and 161 count =
0 cases as in figure 9. These projections were discovered one by
one by analysing the cases that arose in projecting this data set.
No other cases were discovered among the projections of
10,000,000,000 hexahedra, with vertices chosen randomly inside
a unit cube, but so far I do not have a proof that no others exist
among projections of non-degenerate hexahedra with no bow-tie
quadrilaterals.

 Using one processor of an 800 MHz dual Pentium4 Xeon PC,
and an nVidia 5900FXUltra graphics card, figure 10 took 5.27
seconds, of which 0.13 were used to read in the data, 3.5 were
used to classify the cases, and 1.51 were used for preparing and
rendering the triangle strips and fans.

Acknowledgement: This work was performed under the
auspices of the U. S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under
contract number W-7405-ENG-48.

REFERENCES

[1] Peter Shirley and Alan Tuchman, "A Polygonal Approximation to
Direct Scalar Volume Rendering", Computer Graphics Vol. 24, No.
5 (Special Issue on San Diego Workshop on Volume Visualization),
ACM Press, pp. 63 – 70, 1990.

[2] Jane Wilhelms and Alan Van Gelder, "A Coherent Projection
Approach for Direct Volume Rendering", Computer Graphics Vol.
25, No, 4 (Siggraph 1991 Proceedings), ACM Press and Addison
Wesley, pp. 275 – 284, 1991.

 Figure 10. Projection of a volume grid.

[3] Nelson Max, Peter Williams, and Claudio Silva, "Approximate
Volume Rendering for Curvilinear and Unstructured Grids by
Hardware-Assisted Polyhedron Projection", International Journal of
Imaging Systems and Technology, Vol. 11, pp. 53 – 61, 2000.

 [4] Greg Schussman and Nelson Max, "Hierarchical Perspective

Volume Rendering Using Triangle Fans", Volume Graphics 2001,
Springer, Vienna, pp. 309 - 320, 2001.

 [5] Nelson Max, Peter Williams, and Claudio Silva, "Cell Projection of

Meshes with Non-Planar Faces", Data Visualization: The State of
The Art (Post, Nielson, and Bonneau, editors), Kluwer, Boston, pp.
157 – 168, 2003.

Figure 11. Shadow of same volume with a different transfer
function.

